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Abstract--The paper has the following objectives: (1) to draw attention to an improved approach of 
constructing analytical relationships for friction, heat and mass transfer coefficients based on the Reynolds 
flux concept and generalized substance transfer coefficient; (2) to show the way in which the suggested 
integral equation is used to derive relations for friction, heat and mass transfer coefficients; (3) to dem- 

onstrate the validity of the 'conformity principle' for limiting cases. 

1. INTRODUCTION 

Analysis of the requirements of safety and efficiency 
for modern high-power equipment calls for the devel- 
opment of relationships for predicting the hydro- 
dynamics, heat anLd mass transfer characteristics of a 
coolant medium in a wide range of operating con- 
ditions and physical phenomena. In particular, it is 
important to take account of thermophysical proper- 
ties, the contribul:ion of inner sources (sinks), flows 
with injection (suction) and two-phase flows. As a 
rule, the analytic~J models of Petukhov [1], Novikov 
and Voskresenskiy [2], Kutateladze and Leontiev [3] 
and of Lyon [4] have been developed for solving cer- 
tain specific problems and therefore are limited by 
concrete sets of assumptions that narrow the range of 
their application. 

This paper attempts to solve the following problem, 
namely, to derive a general form of relationships for 
the distribution of the coolant medium parameters 
and also friction, heat and mass transfer coefficients 
proceeding from original formulations of con- 
servation laws. "['he subsequent discussion and con- 
clusions are confined to the conditions of inner prob- 
lems for fully established velocity, temperature and 
concentration profiles in axisymmetrical channels. 

2. GENERAUZED SUBSTANCE TRANSFER 
COEFFICIENTS 

In accordance with definitions of friction factor and 
heat and mass transfer coefficients [1, 5], each of them 
is expressed in terms of the cross-section averaged 
weighted flow pa:rameters (velocity, temperature, and 
concentration, see the first line in Table 1). 

That the above definitions could be unified, it is 
expedient to use the concept of the Reynolds flux [5] 
(see the 2nd line in Table 1). Then the substance flux 
can be written as 

Jw = coRms(Sw - S). (1) 

The choice of the sign depends on specific flow con- 
ditions and is not shown here; it is considered to 
be positive by default. The factor o9 appears for the 
Reynolds heat flux as the averaged specific heat of the 
flow when the heat transfer coefficient is defined on 
the basis of the Newton-Rikham law. When friction 
and mass transfer are considered, co = 1, -co = 1. 
Here, for the inner problems of hydraulics, heat and 
mass transfer in axisymmetric channels it is accepted 
that 

Sw - g = ((Sw - S)pw•) / (pw ¢) 

= fl (Sw-S)pw°R'dR/fl PW*R'dR (2) 

where the following notation is used for the sake of 
brevity : R~ = ~R ~- ~ (£ = 1 stands for a plane channel 
and g = 2 for a circular tube). The quantity S assumes 
the value of the enthalpy h (or temperature T) and 
concentration c when ~b = 1. The modulus I Sw- ~ql is 
required for the axial velocity w (for Ww = 0). Thus, 
in the absence of the slip on the wall, ww = 0, the 
weighted mean velocity is defined with the density as 
a weighing factor 

= ( p w ) / ( p ) .  (3) 

By definition the generalized substance transfer 
coefficient Sts and the axial mass flux ( p w )  are associ- 
ated by the relationship 

Sts = Rms / (pw) .  (4) 

Eliminating Rms from equations (1) and (4) results in 
the following dependence for the generalized sub- 
stance transfer coefficient 

sts = Jw/((pw)co(Sw- ~)) 
= Jw(pw~) / ( (pw)co( (Sw-S)pw¢~)) .  (5) 

The physical meaning of Sts follows directly from 
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Cp specific heat capacity 
c concentration, (~op)Jp 
D diffusion coefficient 
g gravitational acceleration 
h specific enthalpy 
k thermal diffusivity 

form factor 
N mass flux, {pw} 
P pressure 
q heat flux 
R relative coordinate, r/rw 
r radius, distance from axis 
S generalized variable, (w, h(T), e) 
T temperature 
t time 
u local velocity (vector) 
Ugf phase difference velocity 
v radial velocity 
w axial velocity 
z axial coordinate. 

Greek symbols 
heat transfer coefficient 

CtN mass transfer coefficient 
F mass source 
v kinematic viscosity 

friction factor 
p density, {(~0p)g+ (q~p)f} 
r shear stress 

NOMENCLATURE 

,1o void fraction. 

Subscripts, superscripts 
D diffusion 
d drift 
g gas {vapour} 
f fluid 
s substance 
T total 
t turbulent 
w wall 
v local sources. 

Symbols 
* friction 
+ friction scales 

relative 
- weighted mean value 
( ) area average 
= tensor. 

Dimensionless groups 
Fr Froude number 
Pe Peclet number 
Pr Prandtl number 
Re Reynolds number 
Sc Schimidt number 
St Stanton number. 

equations (4) and (5) that define the generalized 
coefficient of substance transfer (momentum, heat and 
mass) as a measure of radial-to-axial substance trans- 
fer ratio. 

2.1. Profiles o f  f low parameters in the channel cross 
section 

In fully developed flows through axisymmetric 
channels of constant cross-section the main flows can 
vary both axially and radially. The simplest forms of 
other flows can be represented by axial and radial 
components of a turbulent flow under the conditions 
of the so-called linearly-varying flows [5]. Thus, to this 
type of problem belong different models of boundary- 
layer flows, as well as the 'slender' channel models of 
Lapin and Strelets [6]. Then, the changes in the mean 
value of the variable S under consideration (which is 
referred to mean axial velocity, enthalpy or con- 
centration) are : (1) identical at each cross-section of 
the channel and (2) at least linear downstream. 

To unify designations and reduce intermediate cal- 
culations when deriving relationships for the profiles 
of the parameters and friction, heat and mass transfer 
coefficients, it is convenient to use the concepts of 
generalized substance transfer coefficients [5] and the 
gradient transfer model. Mathematical resemblance 

between the three above-mentioned transfer processes 
(see the top line in Table 1) makes it possible to intro- 
duce a formally generalized equation, in which the 
substance flux J is expressed in terms of the transfer 
characteristic )'r and the gradient of the transfer poten- 
tial S as follows 

J = PTT OS/Or (6) 

where 7v = 7+7s is the total (molecular ( j  +molar  
(Ts)) substance transfer characteristic (coefficient), 
namely, the viscosity, thermal diffusivity or diffusion 
coefficient (see the third line in Table 1). Here empha- 
sis should be placed on the fact that, according to 
Boussinesque's idea of putting turbulent friction for- 
mula in the form of Newton's laminar law, the tur- 
bulent heat and mass fluxes are reduced to the form 
which formally generalizes the Fourier and Fick laws. 
Scaling the variables in equation (6) with their values 
on the wall and integrating along the radius R yields 
the profile of variation for any of the potentials under 
consideration in the channel cross-section for the 
known substance flux and molecular-molar charac- 
teristics of transfer 

P l r  

S+w -- S + = Pes, [ ~ dR. (7) 
JR PTT 
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Table 1. Formulations of substance transfer fluxes, numbers and coefficients 
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Substance flux Momentum flux Heat flux Mass flux 

OS Ow Oh Oc 
J = P~"r ~r  z = -- pvT ~r  q = pkT ~r N = pD.r ~r 

1 Friction, heat or mass 
transfer coefficient 

2 Reynolds flux 
Rm~ = J~/og(Sw- S) 

3 Transfer coefficient 

4 Transfer number 
Pe~ = (pw>r~/(p~yw) 
Pe:  = w ,r~/?~ 

5 Substance of friction 
S ,  = J . / ( p . w , )  

6 Variable S 
S 

S + : - -  
S, 

Stanton numbe]: 

(St~wPe~)- 1 = 

' Pw~' [('1 7" \ 
- -  [ I -2"-- dRIR~ dR 
<pWqt> ~JR R'}~T /] 

8"~w 8"Cw qw 
- <p>(~)2 <pw>~ a = T , - - T ;  St <pw>Cp 

for w~ = 0 
Rm~ = %/~  Rmq = q , / ( h , - h )  

~ Pr 

Re = (pw>r./(p~Vw) Pe = <pw>r./(p~kw) 
R e ,  = W,rw/Vw Pe ,  = W,rw/kw 

w~. = z./pw h,  = qw/(pwW,) 

for w~ = 0 ; 

f w + = Re ,  _ - - d R  h + - h  + = Pe ,  d R  
JR ffqT PlOT 

for w. = O, ~O = 0,~o = 1 ; for ~ = 1, o~ = Cpw/Cp; 

8 / ( ~ R e )  = (StogPe)-' = 

; ~ ( f : ~ d R ) R ' d R  ; ~ ( f : ~ d O  ~ ' ~  

Nw ~N 
~U = ( c _ e )  ; Sto = <pw> 

Rm,, = Nw/(Cw- e) 

Sc 
z~T = g + - - ~ ,  

Sct 

Pep = (pw>rw/(p.Dw) 
Pea. = w , r . / D .  

c,  = Nw/(pwW,) 

cg-c  ÷ =BEE,, ~ R 

for~,= 1, m =  1; 

(StDPeD) - t = 

' pw 1 6 7  
- -  ~ dR R,t dR 

Using the definitions given in Table 1 one can easily 
reconstruct specific relationships for the profiles of 
axial velocity, enthalpy (temperature) and con- 
centrations (see the sixth line) from integral (7). They 
prove to be a generalization of the relationships 
obtained by Petukhov and Popov [1] for velocity and 
temperature profiles that are not  limited by the 
assumption about  a linear distribution of viscous 
stresses. 

2.2. Basic  integral  relat ionship f o r  genera l i zed  sub- 

s tance  f l u x  
As a result of scaling the variables in equation (5) 

one obtains 

st;-' = <pw + >o~(s + - ~¢+) (8) 

where 

<pw> Pes 

(P'w+ > pwW,  P e s ,  

~ 1---friction and mass transfer 
O3 

(Cpw/C,- -hea t  transfer 

C, = (hw-h) l (Tw- T) = f~" Cp d T / ( T w  - T) .  

(9) 

Inserting the integral relationship for the substance 
profile (7) with allowance for equation (2) or (3) into 
relationship (8) results in the desired integral form for 
the generalized substance transfer coefficient 

1 
S t - P e ~ o g f i ~ ( I I  J -~dR'~R~dR.  (10) 

O w  > \ 3 ~ P %  ] 

Thus, Sts is expressed is terms of the profile of the 
substance flux J being transferred in the radial direc- 
tion as well as in terms of the local physical properties 
~0, p and total (molecular+molar)  transfer charac- 
teristic. It should be stressed that equation (10) is 
universal, that is, the insertion of appropriate fluxes 
and substance characteristics transforms it into the 
friction, heat and mass transfer coefficients. This can 
be easily verified using definitions given in Table 1 
(see the last line). 

3. SUBSTANCE FLUX DISTRIBUTION 

The method developed can be extended to two- 
phase flows, so it is convenient to use conservation 
laws in a form equally acceptable for both single-phase 
and two-phase flows. For  this purpose, it appears 
expedient to discribe the two-phase flow on the basis 
of the drift flux model [7]. Table 2 shows the drift flux 
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Table 2. Non-conservative (transportable) forms of conservation law equations, two- 
phase flow description is based on drift flux model [7] 

Field equations of: Definitions of parameters 

Mixture continuity 

~ + v .  (pu) = o 

Convective diffusion 

0c 
p ~  +pu'Vc = -V ' (NT)+F  

Mixture energy 

Oh 
p~-  -r-pu" Vh = --V" (qT)+qv 

Mixture momentum 

Ou 
p ~  +pu" Vu = V. ('CT) -VP+pgT 

p = (~op)g+(~pp)f; pu = (~0pu)g+(q~pu)f; 
where ~pg = 1 - ~Pr 

c = (q~p)g/p; NT = Nt+Nd; 
Nd = c(¢pp)gugf 

h = [(tpph)z + Opph)f]/p ; qx = qt + qd ; 
qd = cpfngf(hg--hf) 

u = [(q~pu)g+ (~opu)f]/p ; ~x = ~t+ ~d ; 
c 

~d = l~pfUgfUgf; PgT = P g+ Ugf 

model modified for the purposes of the present paper. 
The law of propagation of a light phase is described 
by means of the convective diffusion equation. Equa- 
tions of conservation laws are used in a non-con- 
servative form. Here the density p, mass velocity pu 
and enthalpy h represent their two-phase charac- 
teristics defined on the right-hand side of Table 2. The 
terms with the subscript d taking account of the light 
phase drift are added to the corresponding turbulent 
substance fluxes with the subscript t. Additional accel- 
eration due to vapour formation at the phase interface 
can be written together with the hydrostatic compon- 
ent. Thus, a form is obtained that is identical for both 
single-phase and two-phase flows. 

Furthermore, the analysis will be confined to ste- 
ady-state flow conditions for an axisymmetrical flow 
in the (r-z) geometry. Using the boundary-layer 
approximation [6] it is possible to write the con- 
servation law equations presented in Table 2 in a 
generalized and unified form by means of the single 
substance transfer equation 

1 c3 (r'C-~J) ~ -  ~ -  I v t ~ S  t3S 
r z-I ~r = P W c z + P V c r - - - -  (11) 

where w is the axial velocity and v is the radial velocity. 
In the present paper the source term Iv is coupled with 
the pressure gradient and hydrostatic component in 
the motion equation, whereas in the energy and mass 
transfer equation it represents the heat and mass 
source (sink). 

Scaling the variables in equation (11) gives 

1 ~R OS+ OS+ 
R ~-~ ___ ( R ~ - ' f )  = fiw + ~ + f i  v+ + - ~  

(12) 

where Iv = Ivrw/Jw, g = z/rw. 
The integration of the latter equation first with the 

variable upper limit R and then up to the wall, R = l, 

and the combination of the integrals obtained yield 
an equation for the local substance flux 

1 ( <SZ>R 
f = R 1- -~  <Sz> R" I-<Sr> 

<Sr>R 
R~ <rv> + ~ ) ]  (13) 

here the following designations are used for the sake 
of brevity 

f l  dS+ <Sz> = ~w + ~ - R ~  dR (14) 

f0 dS+ (Sr> = ~v+ ~ - R g  dR (15) 

<SZ)R= I R +OS+ ~w ~ - R ~ d R  (16) 
Jo 

f l  ~ dS+ <Sr>R = /~v + ~ - -  R, dR (17) 

<L> = f l  L R z d R  (18) 

<L>R = for LR,( dR. (19) 

Relationship (13), describing radial distribution of the 
substance flux being transferred, and equations (7) 
and (10) enable one to calculate radial profiles and 
generalized substance transfer coefficients. As is seen 
from equation (13), the contribution of each of the 
effects under consideration (convective axial and rad- 
ial transfer, sources (sinks), etc.) to the substance flux 
being transferred can be described as a correction for 
linear distribution. 
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4. ANALYTICAL RELATIONSHIPS FOR FRICTION 
FACTOR, HEAT AND MASS TRANSFER 

COEFFICIENTS 

Assuming that the axial pressure gradient does not 
change in the channel cross-section yields the fol- 
lowing relationship for the friction factor from equa- 
tions (13) and (10) 

{1  I <VZ)R <Vr>RR~ x 1-- ( V z ) -  R~+<Vr)-- 

<P>R 
Fr~, 

where the integrals < Vz), < Vr), < VZ)R and < Vr)R are 
identical to relationships (14-17) when substituting w 
for variable S and 

<#) = f l  fiRs dR (21) 

= f~ #R~ dR (22) 

~w Fr, = . (23) 
Pwgrw 

It is true to say that equation (20) generalizes the 
integral obtained hy Petukhov and Popov [1] for the 
friction factor not only with respect to the functional 
form of accounting for the profile density but it also 
makes allowance for the axial < Vz) and radial < Vr) 
flow accelerations thus generalizing the two-phase 
flow model of Sato et al [8]. 

Under the assumption that the axial enthalpy (and 
concentration) gradients are not functions of the rad- 
ial coordinate, it is possible to obtain the following 
expression from equations (13) and (10) after inte- 
gration by parts 

1 f o [ (  ( H r >  ~ ) ( f : / S w +  R~ dR~ 2 
N~ = oJ 1 -- - ~ - - -  + ~ ] 

(~w+ ~ - ] ~  (24) 

where the integrals (Hr) and <Hr)n are identical to 
relationships (15), (17) and 

= fl 4vR, dR (25) <,~v> 

= for t]vR,t dR. (26) 

The integral for the mass transfer coefficient (SOD 
is functionally identical to equation (24), differing 
from it by the factor o9 = 1. 

Comparison of equation (24) with the relationships 

found in references [1-4] allows a conclusion that this 
equation is a generalization of  the Lyon integral for 
flows with allowance for injection (suction) and inner 
heat sources (sinks). This is confirmed by the validity 
of the 'conformity principle', in limiting cases inclus- 
ive, namely: (1) when v ~ 0, the effect of radial trans- 
fer is neglected and the Novikov-Voskresenskiy type 
of the relationship [2] is derived which describes heat 
transfer for a flow with inner heat sources ; (2) when 
v--, 0 and qv ~ 0, the Petukhov-Popov relationships 
[1] are obtained ; (3) when v ~ 0 and qv ~ 0 and physi- 
cal properties are constant, the Lyon classical integral 
[4] is derived. 

It should be stressed that the general integral forms 
(20) and (24) can be reduced to a number of other 
correlations found in the literature, though the mech- 
anism of such a reduction is beyond the scope of the 
present paper. Thus, in particular, it can be shown 
that under the appropriate set of acceptable assump- 
tions, for example, with respect to the injection (suc- 
tion) models and 7x, the correlations of Kutateladze- 
Leontiev [3] are obtained for the 'limiting laws' of 
friction, heat and mass transfer. Due to the assump- 
tion that the cross-sectional distribution of void frac- 
tion and other two-phase flow parameters is piecewise 
uniform, integral (20) amounts to a 'two-zone' model 
[9] and demonstrates that the problem can be solved 
in quadratures. 

5. CONCLUSION 

The paper presents a simple approach to the con- 
struction of generalized integral relationships for the 
friction factor, and heat and mass transfer coefficients 
by using the Reynolds flux concept and the generalized 
substance transfer coefficient within the boundary- 
layer assumptions. The contribution of momentum, 
heat and mass transfer as well as their sources and 
sinks in the channel cross-section are taken into 
account. 

Unlike the well-known Kutateladze-Leontiev 
relationships [3] for the 'limiting laws' of friction, heat 
and mass transfer and the Petukhov-Popov relation- 
ships [1], the integral forms derived have a greater 
capacity for generalization, and the effects under study 
can be expressed in an additive form. It seems to be 
of considerable importance for criterion evaluation of 
the contribution of the effects involved. Besides, it is 
not the absolute value of the effect that matters, but 
the difference between the area-weighted value and its 
integral mean value. 

The general integral relationships worked out are 
recommended as a basis for the development of new 
phenomenological models of friction, heat and mass 
transfer coefficients. 
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